Contents

4 IPS e.max® – all ceramics – all you need
 • One system for every indication
 • Indications

6 Practical procedure for restorations with IPS e.max®
 • Overview
 • Tooth – Shade determination
 • Preparation
 • Die – Shade determination
 • Impression
 • Cementation
 • Intraoral adjustments

20 Clinical cases
 • Step-by-step
 – IPS e.max lithium disilicate veneer cemented with Variolink® Veneer
 – IPS e.max lithium disilicate inlay cemented with Multilink® Automix
 – IPS e.max lithium disilicate anterior crown cemented with Multilink® Automix
 – IPS e.max lithium disilicate posterior crown cemented with Multilink® Automix
 – IPS e.max lithium disilicate anterior bridge cemented with SpeedCEM®
 – IPS e.max zirconium oxide bridge cemented with SpeedCEM®
 – IPS e.max lithium disilicate hybrid abutment and crown cemented with SpeedCEM®
 – IPS e.max lithium disilicate hybrid abutment crown – screwed-in
 • Starting situation – Final result

40 Aftercare

41 Results from more than 10 years of research
IPS e.max® is an innovative all-ceramic system which covers the entire all-ceramic indication range – from thin veneers to long-span bridges.

IPS e.max delivers high-strength and highly esthetic materials for the Press and the CAD/CAM technologies. The system includes the innovative lithium disilicate glass-ceramic used mainly for single-tooth restorations, hybrid abutments and small bridges, as well as the high-strength zirconium oxide for long-span bridges.

All ceramic materials are based on an integrated material and shade concept for restorations as individual as your patients.

Lithium disilicate glass-ceramic (LS₂)

Lithium disilicate (LS₂) glass-ceramic is ideally suitable for the fabrication of hybrid abutments, as well as monolithic single-tooth restorations and may even be indicated for 3-unit bridges up to the premolar region. The patented glass-ceramic has been tried-and-tested in millions of cases since its introduction. It is distinguished from all previous ceramic materials mainly by its clearly higher stress resistance and its outstanding esthetic appearance.

Zirconium oxide (ZrO₂)

High-strength zirconium oxide (ZrO₂) really proves its worth in long-span bridges. It is one of the most efficient all-ceramic materials for dental-lab applications. Zirconium oxide is characterized by its excellent biocompatibility and low heat conductivity and can be indicated for single-tooth restorations and up to 14-unit bridges. Zirconium oxide can be veneered with nano-fluorapatite or lithium disilicate glass-ceramic.

Fluorapatite glass-ceramic (FAP)

IPS e.max Ceram is a highly esthetic layering ceramic for the IPS e.max System. Thanks to the one common layering ceramic, all the veneered IPS e.max restorations exhibit the same wear properties and surface gloss.

Zirconium frameworks pressed over with IPS e.max ZirPress, which are either stained or veneered, are an alternative to conventionally veneered frameworks.

After all, IPS e.max stands for an all-ceramic system that offers an ideal solution for all indications, which not only works from a material standpoint, but is also confirmed by a wealth of scientific data.

From the beginning of its development until to today, the IPS e.max System has been monitored by the scientific community and many renowned experts have contributed to an excellent data base with their studies.

The worldwide success story, the ever growing demand, as well as millions of fabricated restorations are testament to the success and the reliability of the IPS e.max all-ceramic system.
Indications

<table>
<thead>
<tr>
<th>Indications</th>
<th>Cementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin veneers 0.3 mm</td>
<td>![Image]</td>
</tr>
<tr>
<td>Veneers</td>
<td>![Image]</td>
</tr>
<tr>
<td>Occlusal veneers</td>
<td>![Image]</td>
</tr>
<tr>
<td>Inlays, onlays</td>
<td>![Image]</td>
</tr>
<tr>
<td>Partial crowns</td>
<td>![Image]</td>
</tr>
<tr>
<td>Anterior/posterior crowns</td>
<td>![Image]</td>
</tr>
<tr>
<td>3-unit bridges</td>
<td>![Image]</td>
</tr>
<tr>
<td>Hybrid abutments (cemented on a Ti base)</td>
<td>![Image]</td>
</tr>
<tr>
<td>Hybrid abutment crowns (cemented on a Ti base)</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

1) IPS e.max ZrCAD (zirconium oxide) is veneered manually (fluorapatite) or digitally (lithium disilicate).
2) Up to the second premolar
3) For the cementation of the crown on the hybrid abutment
4) Only in conjunction with a suitable bonding agent
5) Hybrid abutment crowns are directly screwed on the implant.

Contraindications
- Very deep subgingival preparations
- Patients with severely reduced residual dentition
- Parafunctions, e.g. bruxism
- Provisional insertion/trial wear period
- Any other uses not listed in the indications
Practical procedure for restorations with e.max

Overview

<table>
<thead>
<tr>
<th>Working steps</th>
<th>In the dental office</th>
<th>In the laboratory</th>
<th>Ivoclar Vivadent product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shade determination, preparation, die shade determination, impression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tooth – Shade determination</td>
<td>✓</td>
<td></td>
<td>A-D Shade Guide Chromascope Shade Guide</td>
</tr>
<tr>
<td>on the unprepared tooth and/or adjacent teeth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>✓</td>
<td></td>
<td>Recommended preparation for all-ceramics</td>
</tr>
<tr>
<td>with suitable grinding instruments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die shade determination</td>
<td>✓</td>
<td></td>
<td>IPS® Natural Die Material Shade Guide</td>
</tr>
<tr>
<td>on the prepared tooth/die</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impression</td>
<td>✓</td>
<td></td>
<td>Virtual®</td>
</tr>
<tr>
<td>– Silicone or polyether</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Digital impression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabricating the restoration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.max® LS₂</td>
<td>✓</td>
<td>✓</td>
<td>IPS e.max® CAD</td>
</tr>
<tr>
<td>e.max® ZrO₂</td>
<td>✓</td>
<td></td>
<td>IPS e.max® Press</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPS e.max® ZirCAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPS e.max® Ceram</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPS e.max® ZirPress</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPS e.max® CAD-on</td>
</tr>
<tr>
<td>Cementation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etching</td>
<td>✓</td>
<td>✓</td>
<td>IPS® Ceramic Etching Gel</td>
</tr>
<tr>
<td>Cleaning (after try-in)</td>
<td>✓</td>
<td></td>
<td>Ivoclean</td>
</tr>
<tr>
<td>Conditioning</td>
<td>✓</td>
<td></td>
<td>Monobond® Plus</td>
</tr>
<tr>
<td>Conditioning</td>
<td>✓</td>
<td></td>
<td>MultiLink® Automix</td>
</tr>
<tr>
<td>Conditioning</td>
<td>✓</td>
<td></td>
<td>Variolink® II</td>
</tr>
<tr>
<td>Conditioning</td>
<td>✓</td>
<td></td>
<td>Variolink® Veneer</td>
</tr>
<tr>
<td>Cementation – adhesive</td>
<td>✓</td>
<td></td>
<td>SpeedCEM®</td>
</tr>
<tr>
<td>Cementation – self-adhesive/conventional</td>
<td>✓</td>
<td></td>
<td>Vivaglass® CEM</td>
</tr>
<tr>
<td>Intraoral adjustments</td>
<td>✓</td>
<td></td>
<td>Recommended grinding instruments</td>
</tr>
<tr>
<td>Aftercare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aftercare and preventive care with prophy paste</td>
<td>✓</td>
<td></td>
<td>Proxyt®</td>
</tr>
</tbody>
</table>

1 With chairside CAD/CAM system.
2 One-time etching (in the dental office or laboratory) is sufficient. Zirconium oxide is not etched.
3 No conditioning is required for conventional cementation.
Tooth – Shade determination

Optimum integration in the oral cavity of the patient is the prerequisite for a true-to-nature all-ceramic restoration. To achieve this, the following guidelines and notes must be observed by both the dentist and the laboratory.

The overall esthetic result of an all-ceramic restoration is influenced by the following factors:

- **Shade of the tooth stump** (natural stump, devitalized stump, core build-up, abutment)
- **Shade of the cementation material**
- **Shade of the restorative material** (framework shade, translucency/opacity, brightness, veneer, characterization)

Shade determination of the natural tooth

- Determine the tooth shade of the non-prepared tooth and/or the adjacent teeth after tooth cleaning.
- In addition, determine the cervical shade if a crown preparation is planned, for example.
- Determine the shade at daylight and in front of a neutral background.
- Avoid intensively coloured clothes and/or lipstick as these may compromise the result.
- Use the A-D Shade Guide or Chromascop Shade Guide.
Preparation

General preparation guidelines

Successful results can only be achieved with IPS e.max if the preparation guidelines below and the minimum layer thicknesses are strictly observed.

For the preparation of all-ceramic restorations, the following principles apply:
– No angles or edges
– Shoulder preparation with rounded inner edges and/or chamfer preparation

For CAD/CAM-fabricated restorations, the incisal edge of the preparation should be at least 1.0 mm (milling tool geometry) in order to permit optimum milling of the incisal area during CAD/CAM processing.

The dimensions indicated in the paragraphs below reflect the minimum thickness for IPS e.max restorations.

Tip

To be able to work in the oral cavity during preparation with as little interference as possible, we recommend using a lip and cheek retractor as an auxiliary.

OptraGate® ExtraSoft Version (lip/cheek retractor):
– Even, circular retraction of lips and cheeks
– Considerably enlarged treatment area
– Greater view, better access
Thin veneer, veneer

- If possible, locate the preparation in the enamel.
- Do not locate the incisal preparation margins in the area of the abrasion surfaces or dynamic occlusal surfaces.
- If sufficient space is available and depending on the fabrication method, you can even leave out the preparation entirely.

Thin veneer

- Ensure that the minimum layer thickness of the thin veneer in the cervical and labial area is 0.3 mm for the PRESS, or 0.4 mm and 0.5 mm for the CAD technique.
- Make sure that the restoration thickness at the incisal edge is 0.4 mm for the PRESS and 0.5 mm for the CAD technique.

Veneer

- Reduce the cervical and/or labial area by 0.6 mm, and the incisal edge by at least 0.7 mm.

Clinical pictures: Prof. Dr. D. Edelhoff, Germany
Occlusal veneer

- Evenly reduce the anatomical shape while observing the stipulated minimum thicknesses.
- Prepare a circular shoulder with rounded inner edges or a chamfer at an angle of approximately 10 to 30 degrees.
- Ensure that the width of the circular shoulder/chamfer is at least 1.0 mm.
- Reduce the occlusal part by at least 1.0 mm.

Clinical pictures: Prof. Dr. D. Edelhoff, Germany
Inlay, onlay

- Make sure that the preparation margins are not located in the area of static or dynamic antagonist contacts.
- Ensure that the preparation depth is at least 1.0 mm and that the width of the isthmus is at least 1.0 mm in the fissure area.
- Prepare the proximal box with slightly diverging walls and observe an angle of 100 to 120 degrees between the proximal cavity walls and the prospective proximal inlay surfaces. Avoid marginal ridge contacts on the inlay in case of pronounced convex cavity walls without adequate support by the proximal shoulder.
- Round out internal edges in order to prevent stress concentration within the ceramic material.
- Do not prepare slice-cuts or feather edges.
- Provide at least 1.0 mm of space in the cusp areas for onlays.
Partial crown

– Make sure that the preparation margins are not located in the area of static or dynamic antagonist contacts.
– Provide at least 1.5 mm of space in the cusp areas.
– Prepare a circular shoulder with rounded inner edges or a chamfer at an angle of approximately 20 to 30 degrees.
– Ensure that the width of the shoulder/chamfer is at least 1.0 mm.

Clinical pictures: Prof. Dr. D. Edelhoff, Germany
Anterior crown

– Evenly reduce the anatomical shape while observing the stipulated minimum thicknesses.
– Prepare a circular shoulder with rounded inner edges or a chamfer at an angle of approximately 10 to 30 degrees. Ensure that the width of the circular shoulder/chamfer is at least 1.0 mm.
– Reduce the incisal crown third by at least 1.5 mm.
– Reduce the vestibular and/or oral area by at least 1.2 mm.
– For conventional and/or self-adhesive cementation, make sure that the preparation demonstrates retentive surfaces and a sufficient preparation height of at least 4.0 mm.
Posterior crown

- Evenly reduce the anatomical shape while observing the stipulated minimum thicknesses.
- Prepare a circular shoulder with rounded inner edges or a chamfer at an angle of approximately 10 to 30 degrees. Ensure that the width of the circular shoulder/chamfer is at least 1.0 mm.
- Reduce the occlusal crown third by at least 1.5 mm.
- Reduce the buccal or palatal/lingual area by at least 1.5 mm for LS₂ and by at least 1.2 mm for ZrO₂.
- For conventional and/or self-adhesive cementation, make sure that the preparation demonstrates retentive surfaces and a sufficient preparation height of at least 4.0 mm.
3-unit bridge

The preparation of the abutment teeth is the same as for anterior and posterior crowns.

Note regarding lithium disilicate glass-ceramic (LS₂) bridges:

Given the different masticatory forces, the maximum acceptable pontic width is different in the anterior and posterior region.

The pontic width is determined on the unprepared tooth.
– In the anterior region (up to the canine), the pontic width should not exceed 11.0 mm.
– In the premolar region (canine up to the second premolar), the pontic width should not exceed 9.0 mm.

Bridge

(4- and multi-unit bridges)

– Evenly reduce the anatomical shape while observing the stipulated minimum thicknesses.
– Prepare a circular shoulder with rounded inner edges or a chamfer at an angle of approximately 10 to 30 degrees.
– Ensure that the width of the circular shoulder/chamfer is at least 1.0 mm.
– Reduce the incisal or occlusal crown third by at least 2.0 mm.
– Reduce the vestibular and/or oral area by at least 1.5 mm.
Die – Shade determination

The IPS Natural Die Material Shade Guide is used to determine the die shade. Determining the die shade at the end of the preparation is a very important step for the fabrication of all-ceramic restorations. Especially with severely discoloured preparations this is of utmost importance. Only if the dentist determines the shade of the preparation and considers it in the selection of the restorative material, may the desired esthetics be achieved in a targeted fashion.

Shade determination on the prepared tooth/die

– Carry out the shade determination at daylight.
– Carry out the shade determination on the prepared tooth.
– Use the IPS Natural Die Shade Guide.

<table>
<thead>
<tr>
<th>Die shade</th>
<th>Cementation material</th>
<th>Restoration shade</th>
<th>Desired tooth shade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impression

Take the impression as usual:
– Silicone (e.g. Virtual®)
– Polyether
– Digital impression

Temporary restoration

Function, phonetics and esthetics of the permanent restoration are predefined and may still be adapted any time. For this essential treatment step, the Telio® product system provides a multitude of application options.

Important: The temporary restoration is cemented with a temporary, eugenol-free cement, such as the dual-curing Telio® CS Link.
Conditioning of the restoration

<table>
<thead>
<tr>
<th>Material</th>
<th>Lithium disilicate LS₂</th>
<th>Zirconium oxide ZrO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication</td>
<td>Thin veneers, veneers, occlusal veneers, inlays, onlays, partial crowns</td>
<td>Crowns and 3-unit bridges up to the second premolar</td>
</tr>
<tr>
<td>Cementation method</td>
<td>adhesive</td>
<td>adhesive</td>
</tr>
<tr>
<td>Blasting</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Etching</td>
<td>5% hydrofluoric acid (e.g. IPS® Ceramic Etching Gel) 20 s</td>
<td>–</td>
</tr>
<tr>
<td>Conditioning</td>
<td>Monobond® Plus 60 s</td>
<td>Monobond® Plus 60 s</td>
</tr>
<tr>
<td>Cementation system</td>
<td>Variolink® Veneer, Variolink® II, Multilink® Automix</td>
<td>Multilink® Automix</td>
</tr>
</tbody>
</table>

1) With conventional cementation, conditioning is not necessary.

Please observe the corresponding Instructions for Use.

IPS® Ceramic Etching Gel – to generate retentive bonding surfaces on glass-ceramics
- It decisively enhances the bonding effect between the cementation material and the ceramic.
- IPS Ceramic Etching Gel must **not** be applied intraorally!

Ivoclean – universal cleaning paste to remove proteins
- After the try-in of restorations with already etched surfaces
- Applied before conditioning

Monobond® Plus – universal single-component bonding agent
- Generating an adhesive bond (e.g. of the Variolink and Multilink line of products)
- For all indirect restorative materials (glass- and oxide-ceramics, metals, composites, fibre-reinforced composites)
Cementation Navigation System – CNS

The CNS will support you in the selection of the suitable cementation material in virtually every situation where cementation on natural tooth structure or implant abutments is required. Moreover, the CNS shows you the options provided by the cementation materials from Ivoclar Vivadent. Detailed animations guide you through the comprehensive application protocol – from the removal of the temporary restoration to the final fluoride application.

Available as online application, CD-ROM, and App for iPhone and Android

www.cementation-navigation.com

Tip

To provide the necessary and absolute isolation of the treatment area during incorporation, we recommend using a rubber dam as an auxiliary.

OptraDam® Plus (rubber dam):

– Absolute isolation of the treatment area
– Anatomical shape and flexible, three-dimensional design
– Comfortable to wear, even during lengthy procedures
Intraoral adjustments

Recommended grinding instruments for ceramics – use in the dental office
To achieve the expected clinical properties of the ceramic materials, exact polishing after adjustments by grinding is imperative.

<table>
<thead>
<tr>
<th>Type of ceramic / Keramiktyp</th>
<th>Extensive corrections / Grosse Korrekturen</th>
<th>Minor corrections / Geringe Korrekturen</th>
<th>Polishing / Politur</th>
<th>Endo Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS d.SIGN IPS InLine/IPS InLine PoM IPS d.SIGN</td>
<td>Layering ceramics / Schichtkeramik</td>
<td>Flexural strength / Biegefestigkeit 80-130 MPa</td>
<td>before polishing / vor der Politur</td>
<td>medium</td>
</tr>
<tr>
<td>IPS e.max</td>
<td></td>
<td></td>
<td>after polishing / nach der Politur</td>
<td>≤100 µm</td>
</tr>
<tr>
<td>Esthetic Empress IPS Empress</td>
<td>Leucite-reinforced glass-ceramic / Leuzitverstärkte Glaskeramik</td>
<td>Flexural strength / Biegefestigkeit 160 MPa</td>
<td>before polishing / vor der Politur</td>
<td>medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>after polishing / nach der Politur</td>
<td>≤100 µm</td>
</tr>
<tr>
<td>IPS e.max</td>
<td>Lithium disilicate glass-ceramic / Lithiumdisilikat-Glaskeramik</td>
<td>Flexural strength / Biegefestigkeit 380-400 MPa</td>
<td>before polishing / vor der Politur</td>
<td>medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>after polishing / nach der Politur</td>
<td>≤100 µm</td>
</tr>
<tr>
<td>IPS e.max</td>
<td>Zirconium oxide / Zirkoniumoxid</td>
<td>Flexural strength / Biegefestigkeit 980 MPa</td>
<td></td>
<td>medium</td>
</tr>
</tbody>
</table>

The provided grain sizes of the diamond burs are recommendations for ceramic materials from Ivoclar Vivadent. The corresponding directions of the manufacturer of the grinding instruments regarding their correct use, e.g. speed, have to be observed.
Clinical cases – step-by-step

IPS e.max® lithium disilicate veneer cemented with Variolink® Veneer

Dr Lukas Enggist / Jürgen Seger (DT), Principality of Liechtenstein

The temporary restorations are removed. The preparations are cleaned with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxy® fluoride-free). Subsequently, the preparations are rinsed with water spray and dried with oil-free air.

For the esthetic inspection, Variolink® Veneer Try-in Paste can be used. After the try-in, the Try-In Paste is thoroughly washed off with water spray, and the restoration is dried with oil- and moisture-free air.

Etching is performed with 5% hydrofluoric acid (e.g. IPS® Ceramic Etching Gel) for 20 seconds. Subsequently, the preparation is rinsed thoroughly with water and dried with oil-free air.

Monobond® Plus is applied onto the pretreated surface, allowed to react for 60 seconds and then thoroughly dispersed with air.

The treatment field is isolated with a rubber dam (e.g. OptraDam®) and the preparation is cleaned again according to the steps described above. Subsequently, the preparation is dried with oil-free air. Overdrying must be avoided.

Total Etch (37% phosphoric acid gel) is applied. The phosphoric acid is allowed to react on the enamel for 15–30 seconds and on the dentin for 10–15 seconds.

Subsequently, the gel is thoroughly rinsed off with a vigorous water spray for at least 5 seconds. Excess moisture is removed leaving the dentin surface with a slightly glossy wet appearance (wet bonding).

Syntac® Primer is applied on the preparation using a brush, gently rubbed in and allowed to react for at least 15 seconds. Excess of Syntac Primer is dispersed and thoroughly dried. It is not rinsed off.

Syntac Adhesive is applied and allowed to react for 10 seconds. Subsequently, the preparation is thoroughly dried with an air syringe. It is not rinsed off.
Helibond is applied and dispersed to a thin layer. Helibond is only polymerized together with the cementation material.

Variolink Veneer is applied directly onto the preparation and/or onto the inner side of the restoration, if required. Subsequently, it is seated and held in place maintaining stable pressure.

In order to prevent oxygen inhibition, the restoration margins are covered with glycerine gel/air block (e.g. Liquid Strip) immediately after removal of excess.

If a curing light with an output of at least 800 mW/cm² is used, each mm of the ceramic material and segment is polymerized for at least 10 seconds. Subsequently, Liquid Strip is rinsed off. The cementation steps are repeated for all veneers.

The restoration is tacked in place by light-curing a small area for 3–4 seconds (e.g. Bluephase®, 650 mW/cm², LOW mode). Excess material is removed using a suitable instrument.

Proximal areas are reworked using finishing and polishing strips. The restoration margins are polished using polishers (Astropol®) or disks.

A thin layer of Fluor Protector is applied, evenly dispersed and dried with an air syringe.
IPS e.max® lithium disilicate inlay cemented with Multilink® Automix

Dr Ronny Watzke / Sandra Sulser (DT), Principality of Liechtenstein

The temporary restoration is removed. The preparation is cleaned with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxyl fluoride-free). Subsequently, it is rinsed with water spray and dried with oil-free air.

The permanent restoration is tried-in. The shade, fit and occlusion of the restoration are checked. For the esthetic inspection, Multilink Automix Try-In Paste can be used. After the try-in, the Try-In Paste is thoroughly washed off with water spray, and the restoration is dried with oil-free air.

Etching is performed with 5% hydrofluoric acid (e.g. IPS Ceramic Etching Gel) for 20 seconds. Subsequently, the preparation is rinsed thoroughly with water and dried with oil-free air.

Monobond® Plus is applied on the pretreated surface, allowed to react for 60 seconds and then thoroughly dispersed with air.

Reliable isolation of the treatment field (e.g. OptraDam®) is indispensable for the adhesive cementation with composites. The preparation is cleaned again with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxyl fluoride-free). Subsequently, it is rinsed with water spray and dried with oil-free air. Overdrying must be avoided.

The mixed Multilink® Primer A/B is applied on the entire bonding surface (starting from the enamel surface) using a microbrush and rubbed in for 30 seconds.

Excess Multilink Primer is dispersed with air until the mobile liquid film is no longer visible.

Multilink Automix is dispensed from the automix syringe and applied directly on the restoration. Subsequently, the restoration is seated and held in place maintaining stable pressure.

Excess cement material is removed with a microbrush/brush/foam pellet/dental floss. Alternatively, excess material is light-cured with a polymerization device (650 mW/cm²: 3 seconds or 1,000 mW/cm²: 1–2 seconds per quarter surface) at a distance of 10 mm using the quarter technique and subsequently removed with a scaler.
In order to prevent oxygen inhibition, the restoration margins are covered with glycerine gel/air block (e.g. Liquid Strip) immediately after the removal of excess.

Proximal areas are reworked using finishing and polishing strips. The occlusion and function are checked. Restoration margins are polished using polishers (Astropol®) or disks.

Subsequently, all cementation joints are light-cured (approx. 1,200 mW/cm²) again for 20 seconds. If non-translucent, opaque restorative materials are used, self-curing must be completed.

A thin layer of Fluor Protector is applied. The varnish is evenly applied and dried with an air syringe.

Subsequently, Liquid Strip is rinsed off and the rubber dam is removed.
IPS e.max® lithium disilicate anterior crown cemented with Multilink® Automix

Dr Ronny Watzke / Franz Perkon (DT), Principality of Liechtenstein

The temporary restoration is removed. The preparation is cleaned with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxyl® fluoride-free). Subsequently, it is rinsed with water spray and dried with oil-free air.

The permanent restoration is tried-in. For the esthetic inspection, Multilink® Automix Try-In Paste can be used. After the try-in, the Try-In Paste is thoroughly washed off with water spray, and the restoration is dried with oil- and moisture-free air.

Excess Multilink Primer is dispersed with air until the mobile liquid film is no longer visible.

Monobond® Plus is applied on the pretreated surface, allowed to react for 60 seconds and then thoroughly dispersed with air.

The preparation is cleaned again according to the steps described above. Subsequently, the preparation is dried with oil-free air. Overdrying must be avoided!

The mixed Multilink® Primer A/B is applied on the entire bonding surface (starting from the enamel surface) using a microbrush and rubbed in for 30 seconds.

Etching is performed with 5% hydrofluoric acid (e.g. IPS® Ceramic Etching Gel) for 20 seconds. Subsequently, the preparation is rinsed thoroughly with water and dried with oil-free air.

Multilink Automix is dispensed from the automix syringe and directly applied on the restoration.

The restoration is seated and held in place maintaining stable pressure.
Excess cement is light-cured with a polymerization device (650 mW/cm²: 3 seconds or 1,000 mW/cm²: 1–2 seconds per quarter surface) at a distance of 10 mm using the quarter technique.

Excess material is now easily removed with a scaler.

In order to prevent oxygen inhibition, the restoration margins are covered with glycerine gel/air block (e.g. Liquid Strip) immediately after the removal of excess.

Subsequently, all cementation joints are light-cured (approx.1,200 mW/cm²) again for 20 seconds. If non-translucent, opaque restorative materials are used, self-curing must be completed. Subsequently, Liquid Strip is rinsed off.

Proximal areas are reworked using finishing and polishing strips. The occlusion and function are checked. Restoration margins are polished using polishers (Astropol®) or disks.

A thin layer of Fluor Protector is applied. The varnish is evenly dispersed and dried with an air syringe.
IPS e.max® lithium disilicate posterior crown cemented with Multilink® Automix

Dr Arnd Peschke, Principality of Liechtenstein / Chairside

The preparation is cleaned with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxy® fluoride-free). Subsequently, it is rinsed with water spray and dried with oil-free air.

The permanent restoration is tried-in in the non-crystallized state. Any adjustments of the occlusion contacts can be easily performed before crystallization. Subsequently, the combination firing (crystallization, glaze) is performed.

Etching is performed with 5% hydrofluoric acid (e.g. IPS® Ceramic Etching Gel) for 20 seconds.

Subsequently, the preparation is thoroughly rinsed with water spray...

...and dried with oil-free air.

Monobond® Plus is applied on the pretreated surface, allowed to react for 60 seconds and then thoroughly dispersed with air.
Excess cement material is light-cured with a polymerization device (650 mW/cm²: 3 seconds or 1,000 mW/cm²: 1 – 2 seconds per quarter surface) at a distance of 10 mm using the quarter technique. Excess material is now easily removed with a scaler.

In order to prevent oxygen inhibition, the restoration margins are covered with glycerine gel/air block (e.g. Liquid Strip) immediately after the removal of excess. Subsequently, all cementation joints are light-cured (approx. 1,200 mW/cm²) again for 20 seconds. If non-translucent, opaque restorative materials are used, self-curing must be completed.

Proximal areas are reworked using finishing and polishing strips. The occlusion and function are checked. Restoration margins are polished using polishers (Astropol) or disks.

A thin layer of Fluor Protector is applied. The varnish is evenly dispersed and dried with an air syringe.
IPS e.max® lithium disilicate anterior bridge cemented with SpeedCEM®

Dr Ronny Watzke / Franz Perkon (DT), Principality of Liechtenstein

The temporary restoration is removed. The preparation is cleaned with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxyt® fluoride-free). Subsequently, it is rinsed with water spray and dried with oil-free air.

The permanent restoration is tried-in. The shade, fit and occlusion of the restoration are now checked.

Etching is performed with 5% hydrofluoric acid (e.g. IPS® Ceramic Etching Gel) for 20 seconds. Subsequently, the preparation is rinsed thoroughly with water and dried with oil-free air.

Monobond® Plus is applied on the pretreated surface, allowed to react for 60 seconds and then thoroughly dispersed with air.

The preparation is cleaned again with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxyt fluoride-free). Subsequently, it is rinsed with water spray and dried with oil- and moisture-free air. Overdrying must be avoided.

SpeedCEM® is dispensed from the automix syringe and the desired amount is applied directly on the bonding surface of the restoration.

The gel-like excess material is now easily removed with a scaler.

The restoration is seated and held in place maintaining stable pressure.

Excess cement material is light-cured with a polymerization device (approx. 650 mW/cm²) for 1 second per quarter surface at a distance of approx. 0–10 mm.
In order to prevent oxygen inhibition, the restoration margins are covered with glycerine gel/air block (e.g. Liquid Strip) immediately after the removal of excess.

Proximal areas are reworked using finishing and polishing strips. The occlusion and function are checked. Restoration margins are polished using polishers (OptraPol® Next Generation) or disks.

Subsequently, all cementation joints are light-cured (approx. 1,200 mW/cm²) again for 20 seconds. If non-translucent, opaque restorative materials are used, self-curing must be completed.

A thin layer of Fluor Protector is applied. The varnish is evenly dispersed and dried with an air syringe.

Subsequently, Liquid Strip is rinsed off.
IPS e.max® zirconium oxide anterior bridge cemented with SpeedCEM®

Dr Ronny Watzke / Pascal Scherrer (DT), Principality of Liechtenstein

The temporary restoration is removed. The preparation is cleaned with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxyt® fluoride-free). Subsequently, it is rinsed with water spray and dried with oil-free air.

The permanent restoration is tried-in. The shade, fit and occlusion of the restoration are checked. The inner surface of the restoration is cleaned by blasting it (e.g. IPS e.max® ZirCAD, 1 bar, Al₂O₃ 100 μm).

The preparation is cleaned again with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxyt® fluoride-free). Subsequently, it is rinsed with water spray and dried with oil-free air. Over-drying must be avoided.

The desired amount of SpeedCEM® is applied directly onto the bonding surface of the restoration.

The restoration is seated and held in place maintaining stable pressure.

Excess cement material is light-cured with a polymerization device (approx. 650 mW/cm²) for 1 second per quarter surface at a distance of approx. 0–10 mm.
Proximal areas are reworked using finishing and polishing strips. The occlusion and function are checked. Restoration margins are polished using polishers (OptraPol® Next Generation) or disks.

Excess material is now easily removed with a scaler. In order to prevent oxygen inhibition, the restoration margins are covered with glycerine gel/air block (e.g. Liquid Strip) immediately after the removal of excess.

A thin layer of Fluor Protector is applied. The varnish is evenly dispersed and dried with an air syringe.

Subsequently, all cementation joints are light-cured (approx. 1,200 mW/cm²) again for 20 seconds. If non-translucent, opaque restorative materials are used, self-curing must be completed. Subsequently, Liquid Strip is rinsed off.
IPS e.max® lithium disilicate hybrid abutment and crown cemented with SpeedCEM®

Dr Ronny Watzke / Jürgen Seger (DT), Principality of Liechtenstein

The abutment is screwed-in.

The permanent restoration is tried-in. The shade, fit and occlusion of the restoration are now checked.

The abutment is cleaned with a polishing brush and an oil- and fluoride-free cleaning paste (e.g. Proxy®). Subsequently, it is rinsed with water spray and dried with oil-free air.

A thin layer of Monobond® Plus is applied on the abutment and allowed to react for 60 seconds. Subsequently, the abutment is dried with moisture- and oil-free air.

Etching is performed with 5% hydrofluoric acid (e.g. IPS® Ceramic Etching Gel) for 20 seconds. Next, the preparation is rinsed thoroughly with water and dried with oil-free air.

Monobond Plus is applied on the pretreated surface, allowed to react for 60 seconds and thoroughly dispersed.

SpeedCEM® is dispensed from the automix syringe and the desired amount is applied directly on the restoration.

The restoration is seated and held in place maintaining stable pressure.

Excess cement material is light-cured with a polymerization device (e.g. Bluephase® approx. 650 mW/cm², LOW mode) for 1 second per quarter surface at a distance of approx. 0–10 mm.
The gel-like excess material is now easily removed with a scaler.

Proximal areas are reworked using finishing and polishing strips. The occlusion and function are checked and adjusted, if required. Restoration margins are polished using polishers (Astropol®) or disks.

A thin layer of Cervitec® Plus is applied. The varnish is left to dry or dried with an air syringe.

In order to prevent oxygen inhibition, the restoration margins are covered with glycerine gel/air block (e.g. Liquid Strip) immediately after the removal of excess. Subsequently, all cementation joints are light-cured (approx. 1,200 mW/cm²) again for 20 seconds. If non-translucent, opaque restorative materials are used, self-curing must be completed.

Subsequently, Liquid Strip is rinsed off.
IPS e.max® lithium disilicate hybrid abutment crown – screwed-in

Dr Ronny Watzke / Franz Perkon (DT), Principality of Liechtenstein

The temporary restoration is removed.

The hybrid abutment crown is etched from the occlusal side with 5% hydrofluoric acid gel (IPS® Ceramic Etching Gel) for 20 seconds.

The hybrid abutment crown is cleaned, rinsed with water spray and then dried with oil-free air.

The hybrid abutment crown is screwed in manually with the dedicated screw for the try-in of the permanent restoration. The shade, fit and occlusion of the restoration are now checked. Subsequently, the hybrid abutment crown is carefully removed again for extraoral cleaning.

Next, the preparation is rinsed thoroughly with water and dried with oil-free air.

The hybrid abutment crown is inserted into the implant intraorally. It is screwed in manually with the appropriate screw, which is tightened with a torque wrench (the instructions of the manufacturer must be observed).
Polymerization is performed using an LED polymerization device (e.g. Bluephase®).

Monobond® Plus is applied on the pretreated surface, allowed to react for 60 seconds and then thoroughly dispersed with air.

Next, cotton or foam pellets are inserted into the screw channel and the bonding system is applied (e.g. HelioBond).

The occlusion/articulation is checked after polymerization and any rough spots are removed with suitable fine-grit diamonds.

The screw channel is sealed with a composite material (e.g. Tetric EvoCeram®) in the appropriate shade.

The restoration is polished to a high gloss using silicone polishers (e.g. OptraFine).

A thin layer of Cervitec® Plus is applied.

The varnish is left to dry or dried with an air syringe.
IPS e.max lithium disilicate veneer cemented with Variolink® Veneer
Dr Lukas Enggist / Jürgen Seger (DT), Principality of Liechtenstein

IPS e.max lithium disilicate inlay cemented with Multilink® Automix
Dr Ronny Watzke / Sandra Sulser (DT), Principality of Liechtenstein
IPS e.max lithium disilicate anterior crown cemented with Multilink® Automix
Dr Ronny Watzke / Franz Perkon (DT), Principality of Liechtenstein

IPS e.max lithium disilicate posterior crown cemented with Multilink® Automix
Dr Arnd Peschke, Principality of Liechtenstein / Chairside
IPS e.max lithium disilicate anterior bridge cemented with SpeedCEM®
Dr Ronny Watzke / Franz Perkon (DT), Principality of Liechtenstein

IPS e.max zirconium oxide anterior bridge cemented with SpeedCEM®
Dr Ronny Watzke / Pascal Scherrer (DT), Principality of Liechtenstein
IPS e.max lithium disilicate hybrid abutment and crown cemented with SpeedCEM®
Dr Ronny Watzke / Jürgen Seger (DT), Principality of Liechtenstein

IPS e.max lithium disilicate hybrid abutment crown – screwed-in
Dr Ronny Watzke / Franz Perkon (DT), Principality of Liechtenstein
Quality assurance by means of professional care

Like natural teeth, high-quality all-ceramic restorations need regular professional care. The objective is to obtain clean, smooth surfaces on which the growth of bacterial biofilms and the risk of secondary caries and gingivitis is minimized.

Proxyt®
Peri-implant tissue is more sensitive than gingival tissue. Implant restorations are gently cleaned with the fine Proxyt paste and soft rubber cups or brushes.

The fine Proxyt paste, which does not contain pumice, enables you to effectively clean your high-quality ceramic restorations. The polishing paste ensures a natural gloss and is gentle to the sensitive gingival tissue.

Fluor Protector
The clear, colourless protective varnish Fluor Protector protects the natural teeth.

A thin layer of Fluor Protector is evenly applied on the previously cleaned and dried teeth. Subsequently the varnish is dried with air. After the treatment, the mouth is not rinsed with water.
Results from more than 10 years of research

The IPS e.max System is an innovative all-ceramic system, which includes materials made of lithium disilicate (LS$_2$) glass-ceramic and zirconium oxide (ZrO$_2$) for the press technique and CAD/CAM technology. In addition, a universally applicable nano-fluorapatite glass-ceramic for veneering all the different components of the IPS e.max System is available.

From the beginning of its development until to today, the IPS e.max System has been monitored by the scientific community and many renowned experts have contributed to the establishment of an excellent data base with their studies. The worldwide success story, the ever growing demand, as well as the more than 40 million fabricated restorations are testament to the success and the reliability of the system.

More than 20 clinical in-vivo studies to date and even more in-vitro studies, as well as the continuously rising number of clinical studies involving the e.max System throughout the world show the long-term success of the product in the oral cavities of patients.

Summary of the IPS e.max System

Data on the clinical use of the IPS e.max System over a period of up to 5 years for ZrO$_2$ and up to 10 years for LS$_2$ is available.

The survival rates from clinical studies on IPS e.max Press (6 studies), IPS e.max CAD (6 studies) and IPS e.max ZirCAD (8 studies) were summarized and the overall survival rate of the system was calculated. A total of 1071 IPS restorations from 20 clinical studies were included. The result revealed an overall survival rate of 96.8% for the IPS e.max System.